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The linear Roltzma.nn transport equat(ion (BTE) is an integro-differential equation arising in 

deterministic models of neutral and charged pa.rticle t.ransport,. In slab (one-dimensional Cartesian) 
geometry and certain higher-dimensional cases, Diflusl:orz S~~tlretic Acwlerution (USA) is known to 
be an effective algorithm for the iterative solution of the discretized HTE. Fourier and asymptotic 
analyses have been applied to va,rious idealizations (e.g., problems on infinite domains with constant 
coefficients) to obtain sharp bounds on the convergence rate of DSA in such cases. 

While IXA has been shown to be a highly effective acceleration (or preconditioning) tech- 
nique in one-dimensional problems, it has been observed to be less effective in. higher dimensions. 
This is due in part to the expense of solving the related diffusion linea,r system. We investigate 
here the eirectiveness of a parallel semicoarsening multigrid (SMG) solution a.pproach to DSA pre- 
conditioning in several three dimensional problems. In particular, we consider the algorithmic a.nd 
impl.ementation scalability of a parallel SMG-DSA preconditioner on severa. types of test problems. 

The Boltznmnn Equation. We begin with the linear tirne-dependent BTE in a three di- 
mensional box geometry with general scattering [s]. The spatial domain is the box D E {r = 
(:w,~)l~, 5 :L’ I kmay 2 Y 5 by, a.nd (I,,? 5 z < b,}, the direction variable is fl E S2, the unit 
sphere in R”, the energy variable is E E (0, IX), t.he time variable is t, and the equation in the flux 
$(r, 52, E, t) is given 13; 

where V,$ E (d~,/3:c,a~l,ldy,d~,/8~) ancl v(E) is the particle speed. The energy vsria,ble E is 
discretized into energy subgroups, giving rise to a linear system that is blocked by energy group. 
Wheu using implicit time integration methods, a linea,r system of this form must be solved at each 
timestep, usually via a block Jacobi solution method. To invert the block diagonal of this matrix 
a sequence of mono-energetic, steady-state problems of the general form 

must be solved for each energy group at each timestep. Thus, in what follows we concentrate on 
the solution of (2). 

When solving (2)) the flux $( T, Q) is expanded in surface harmonics according to 
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wh.ere lGm(0) is a surface harmonic and 

is the (n, TTL)~~ moment of $. The source /I is similarly expanded. 
G iven $ in the above form, one is able to rewrite the scattering integral in the form 

where the Os,n are given by 

31 
+&-j E 2~ 

/ -1 &(7’, pojE&o)~Po, 

and where ,UO is the cosine of the scattering angle. The total cross section (T is given by 

wh.ere gCL is t.he absorption cross section. 
Boundary conditions rnust also be specified so as to make (2) well-posed. Various options 

include a reflecting condition on a face, or a Dirichlet condition in which the incident fiux is 
specified on a face. For simplicity, we will consider only the latter ca,se. Namely, we will consider 
boundary conditions of the form 

(4, $(r, R) = g(r, R) f or all T E i?D alld 12 E 6’” with G(r) . 0 < 0, 

where G(r) is the outward pointing unit normal at r E 829. 

Discretization of the 3-D Problem. In previous work [I], we derived a matrix version of 
the well-known diunao~~cl difle~‘e~nce discretizat,ion scheme for the i-U slab problem analogous to 
(2)-(4). Th’ . f 15 ormalism was crucia.1 to the development and analysis of the I-D DSA preconditioner 
d.iscussed therein. We extended that development to B-D problems in [2], and give a brief overivew 
here. 

The specific quadrature rules we consider for approxima.ting integrals on S2 employ the standard 
symmetry assumptions. Following Carlson and Lat hrop [4], we consider quadrature rules of the 
form 

where Rt E (I-Q, ~jt, &), for all 1 = 1,. . . , L, with L = Y(Y + 2) and v is the number of direction 
cosines (v = 2,4,6,. . .). See [2] for more details. 

We use a P&m-Gakrkin finite-element method for the solut,ion of the problem 

09 
i 

12 . O$ + all) = f in D, 
$J(T) = g(r) for all 7’ E 327 with i;(r). St < 0, 

where 12 = (j-c, 7, [) E S” is fixed and equal to one of the above quadrature points (although we 
suppress the ! subscript to simplify nota.tiouj, 2) is the spatial domain defined earlier, a.nd C(T) is 
the outward pointing unit normal. at 1’ E X?. The functions f, g and cr a,re assumed known. 
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We first discretize 2, into zones in the natural way, and define 

Ax; I= x; - x;.-, for % = 1,. . . , M, Ayj = yj - yj.el for 
Azk = zlc - z,+~ for k = I,. . . , K, 

j = 1, . , . ) J, and . 

3 

a,nd define r;jk = (x;, gj, zk). Also define AT;,, E AziAyjAzk. The {rijk} are referred to as nodes, 
a.nd function values at these points are called ,aodnl u&es. Assume that CT and f ha,ve constant 
values on each ZOTE 

denoted by a;jh a,nd fi,ik, respective1.y. Function values tha,t are constant on zones will be referred 
to as zone-centered values. We use $i,;jl; to denote the approximation to $(r;jkj, the true solution 
at r;jk. Following the development given in [2], there are (M + l)(J f l)(K + 1) unknowns $$jk. 
There a.re MJK zonal equations, a.ncl MK + J&f f J.h’ + M f cl + 1~’ $1 boundary equations, and 
we note that (M + l)(J + l)(li + 1) = MJ.K f n//K $ JM $ JA’ -t M $ J + .A’ + 1. 

Writing the discretized system in nmtrix n.otation, we first have the discrete flux vector @ E 
Jj,(lw+‘)(J+l)(“+l), defined f or all Trades ordered in the natura.1 way. Next, define diagona,l matrices 
Ax I diag(A:cl, . . . , Arc&~), with Ay and AZ similarly, and define the matrices DM E R”x(“+l) 
anrl Siz/r E R1’lx (jbJ+l) by 

III a, simila,r way, define the matrices DJ, SJ, DI(~, and Sri. Let C 3 diag(airr, . . . , cr,~~J~j E RIMJJC, 
and define the matrices C,, C,, C,, a.nd S by 

The matrices CT, Cr,, and C, represent the discretized versions of the differentiation operators d/i)z, 
a/tly, a/62, respectively, and S represents an avera,ging matrix ta,king nodal vectors into zone- 
centered vectors. With these definitions, it is possible to write the M./K zone-cemered eqna.tions 
in the unknown 9 as 

(8) (C t csj!I! = 1;: 

To isolate the boundary values, first note that for a direction vector R with all its cotnponents 
positive, $ satisfies a Dirichlet condition for all r = rejk, risk, or r;jo, i.e., for an T on any one of the 
three faces x = 20, y = yn, or z = ~0. For any such 51, letting G be a vector of the same dimension 
as !I? whose possibly nonzero entries are values of g(~, R) at a811 the boundary points, tbe discrete 
boundary conditions ca,n be written as Eoeo(@ - G) = 0, where 

with the vectors eel and ens having the natural interpreta.tions, There are different E matrices for 
the other possible qua.drature points. In all, there are eight different Eijk matrices, with i = 0 or 
M, j = 0 or J, and k = 0 or I{. 
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At this point it is necessary to introduce the dependence of Q, G, and the ma.trix C on the 
quadrature point Q. For a given R = Re, the vector !l! is really !Pe, G = Ge, and the matrix C = CL, 
for the subscript ! corresponding to that a. Then the matrix representation of the discr&e version 
of (6) ca,n be written as 

with Bp = 1s;jk for the appropriate choice of i,yi! k, and Ce = p!C, + TeC, + &C,. Note that Ht 
opera,tes on nodal vectors. 

The Discrete Ordinates Method. Continuing the matrix development of the overall dis- 
cretiza.tion of the BTE, we begin by defining discretized represent,atioas of the opera.tions of taking 
moments of the flux. As operators on zone-centered vectors, these .are easily seen to be given by 
the MJK x LMJK matrices 

00) L ?x,?n = - ( “fl]Ynm(12,)I 1 2L~g.E;ln(Q~)I 1 . . - 1 uJLT:Z)2(QJT ) . 

Similarly, we define the LA4JK x A4JK matrices 

y,p”(fh)J 

(11) I’ ‘n,m = 

( i I- Y;yo~)I 

where 1 = I!~IJK. We also will find it useful to define the grouped matrices I;, and .Lz, where 

L:-rl 
L,= ; 

i 1 

, and .L,+ = (L;,-,, . a ., L$,,) . 
L w ,7L 

To represent the source t,errn, define the zone-cent,ered vector Q - (qij& E RL”J’i, where qi,il;c I 
q(~;jk, ste). For the boundary terms, define the block diagonal ma.trices B and C by 

13 z diag(Br,..., RL) and C z diag( Cr , . . . , CL), 

and let 

The matrix Z injects zone-cent,ered vectors into the noc1a.l vector spa,ce, and the ma,trix 3 averages 
nodal vectors t,o obtain zone-centered ones. Note that Z*Z = I and ZT%b = 0. Using the a.bove 
matrices, define the matrix H by 

(13) H z diag(Hr, . . . , Hl;) = Z(sYC + 3) -I- &a. 



The matrices Z and 21, a,re needed sin.ce H operates on nodal vectors, while the scattering matrix 
operates on zone-centered vectors. (R.ecall that f was assumed to be zone-centered in the devel- 
opment of the Petrov-Galerkin method discussed earlier.) If we assume only N + 1 terms ‘in the 
scattering operator, then the complete discretization of (2)-(4) can ,. b e written in the compact form 

We now transform (14) into an equivalent moment form. For simplicity here, assume that 
N = :I. It is shown in [2] tha.t the matrix tf is invertible. So, first multiply (14) by 11-r, and then 
by either Lo,!? or Lis to give 

Defining @e = Le$q‘, ‘I1 = &,$‘XI!, Re = LoSiN-‘E’, l3r = LiSH-* F, and defining the rectangular 
mat,rices K,,,, = L,SA-’ ZL;t, for 12, II’ = 0, 1, t,hese equations are 

(15) Al (1:) = (r) ,withArz ( “‘T1i,zTu 13,~1~~Y~,11., 1. 

Once @e and Epr a;re obtained by solving (15), iii is recovered by solving the equa,tion 

(16) HXP - Z&p”@” + zL;r[<p1+ zc-lC) + ZbBG. 

We note that in the above development, we are lead to a linear system to be solved for the 
moments ‘30 and Qri, namely (1.5). This system has the form 

(17) A@ = R. 

The development was given for N = 1, for which the matrix A in (1.7) is -47, and its size is 4MJK. 
In the case of isotropic sca.ttering, N = 0, only the Ot” moment @e needs to be computed, and the 
matrix A in (17) is A = A0 I= I - Ke,$e, of size MJK. In general, the matrix A in. (1.7) has the 
form A = I - KI’, for suita.ble choices of the matrices Ir’ and I’. 

Source Iteration. The iterative sol.ution of (17) has typically been accomplished via a simple 
Richa.rdson iteration. Without preconditioning, Richardson iteration for (17) is 

(18) @W) = I(-&“) .$. 12, 

for k = O,l,. . ., with Q(O) being some initial. guess. (We note that (18) is also referred to as sou~‘cr: 
i%erataon in the literature.) Th.e iteration (18) will converge for a.ny initial guess since the spectral 
radius p(KI’) < 1. 

Some form of preconditioning is generally needed for thick problems. If C represents a. precon- 
ditioner for A, then the preconditioned A problem becomes 

(19) AP(P-la) = R, 

and the corresponding source iteration is 

($“+‘) = (I _ A.P)($“) + R, 

for k = O,l,. . ., wit11 @(‘“I zz p-l@(“) * d dn some initial guess O(O). Of course, other more powerful 
iterative methods such as BICGSTAB can also be used to solve the preconditioned system (19). 
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DSA Freconditioning, In [2] the DSR preconditioner for the discrete problem a.bove assum- 
ing isotropic scattering is given by 

(20) 1’” z I,~,JK + SD+ STCA~I’o, CO’ where 

-DC, c S”AJT ia,nS + ; (CjA~rE$‘z 4 C~ATC,$‘, + C;rA~E;,;Cz) 

+ 2crS~Az‘sl<~ Q, S~A$s.J @ (FOMti;fn/l + en/rn&//~) 
+ 2crS~AZ,S~< $3 ( e*.p$ + eJJe;,,) 8 s;fAiln:s,~] 
+ 2CY(tZ”JiC?~~ + e~<~ie~vK) @ S~AySJ @ S~AZs’hf, 

with N FZ (l/Lz~) C [+u ,w&, Ca,O 5 X(1 - I’,), C,,1 q C(I - ?I), and F-I defined as in (12). (A 
related preconditioner for linearly anisotropic scattering is also derived in [2].) In (20), D$ refers 
to the pseudo-inverse of the DSA matrix II,,. The following facts are shown in [a]: 

1. D,, is singular. 
2. dim(N(UCO)) = ,v + J + K + 1. 

4. N(Dco) C Af(S), N(D,,) C N(C,), N(D,,) C N(Cy), etc. 
While D,, is clearly symmetric from its form, it is singula,r. The 4-th fact above and the form of 
.Pu imply that the IICo 1inea.r systems to solve a.re always consistent, i.e., they have solutions. 

Parallel Implemention Issues. The parallel solution of the discretized system (17) has 
been discussed at length in [5], [6] a.nd [7]. The implementation discussed therejn is pa.ra.llelized 
in all phase space variables. To this we have added a parallel implementation of the above DSA 
precon ditioncr PO. The liltear systems involving the U,, matrix are not solved. ex.actly. Rather, 
we use a parallel multigrid method to approximately solve these systems. SpecifiAly, we use a 
parallel implementat,ion of t,he Shaffer semicoarsening multigrid (SMG) method discussed in [3], 
and perform a V(l,O) cycle to approximate the action of’ D,, + times a vector. We investigate the 
algorithmic sc&bility and scaled efFiciency of the a.bove SMG-DSA preconditioned iteration on 
several problems involving highly diffusive regions, sometimes coupled to very thin regions. 
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